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With the study of the  co l l i s ion  of me ta l l i c  p la tes  acce le ra t ed  by an explosion, invest igat ion of 
p las t ic  de format ions  in the  co l l i s ion  zone is of g r ea t  impor tance .  In [1] a method is expounded 
for  invest igat ions  of de fo rma t ion  with explosion welding under  conditions of wave format ion;  
the  method cons i s t s  of the p r e s s i n g  of a thin wi re  into the meta l l i c  p la te .  With col l i s ion of the 
p la tes ,  the flowing m e t a l  c a r r i e s  the wi re  with it; the change in the f o r m  of the l a t t e r  makes  
it poss ib le  to evaluate  the c h a r a c t e r  of the p las t ic  deformat ion  in the col l i s ion  zone. F r o m a n  
inves t iga t ion  of the de format ion  of the wi res ,  such impor tan t  c h a r a c t e r i s t i c s  as  the v i scos i ty  
of the  me t a l s  can be found. The method set  for th  in [1] is one of the few means  of invest igat ing 
the  de fo rma t ion  of m e t a l s  with h igh-speed  col l i s ions .  The diff icult ies in the invest igat ion a r e  
bound up with the sma l l  t imes  of the p r o c e s s  and with the high p r e s s u r e s ,  developing with an 
explosion and demol ish ing the expe r imen ta l  unit. In [1], f r o m  an ana lys i s  of viscous flow du r -  
ing the  col l i s ion  of p la tes ,  a dependence of the shift  on the dis tance to the in te r face  between 
the  m a t e r i a l s ,  desc r ibed  by a pa rabo la ,  is der ived .  It is noted that,  n e a r  the in te r face ,  the 
t h e o r e t i c a l  and expe r imen ta l  r e su l t s  d i f fer  cons iderab ly .  It is impor tan t  to make  an a t tempt  
at  a theore t ica l  ana lys i s  of the wi re  de format ion  if, with the col l i s ion of meta l l i c  p la tes ,  a jet  
is fo rmed  and the in te r face  be tween the m a t e r i a l s  is even.  In this  case ,  the flow dif fers  s t rongly  
f r o m  the flow under  conditions of wave fo rma t ion  [2], and nea r  the in te r face  the flow cannot be 
desc r ibed  by a parabol ic  dependence; this  dependence will p robab ly  be exponential .  To desc r ibe  
flow with the fo rma t ion  of a jet ,  in [3] a model  of an ideal liquid is employed.  Since the analys is  
of a co l l i s ion  between viscous  je t s  with a f r ee  boundary is bound up with se r ious  diff icult ies,  in 
the f i r s t  approx ima t ion  it is advisable  to cons ide r  the de fo rmat ion  of the liquid line with the de-  
fo rma t ion  of ideal j e t s .  

w L e t t h e r e b e  a region of space ,  occupied by a p lane  s t eady - s t a t e  flow of an ideal liquid, and, at the 
momen t  of t ime  t 0, le t  t he re  be isola ted a volume of the liquid, bounded by the c losed cu rve  of the l ines 

fo(Zo) = c, ( ! . 1 )  

where  z 0 is a complex  coordinate ;  c is a complex  constant .  With the p a s s a g e  of t ime ,  the isolated liquid volume 
will change its fo rm,  being displaced along with the flow a s  a whole.  We pose  the p r o b l e m  of finding the f o r m  
of the liquid volume at  s o m e  m om en t  of t i m e  t .  The coordinate  of an isola ted Lagrang ian  pa r t i c l e  with mot ion 
sa t i s f i es  the in tegra l  equation 

t 

S (t )  = z 0 "1- .I -~ (z (t)) dr, ( 1 . 2 )  
to 

where  ~(z) is the complex-con juga te  veloci ty,  defined in t e r m s  of the complex  potent ial  w=~p +ir 

dw/dz =- ~. (1.3) 

We cal l  the liquid l ine f(z, t) the boundary of the volume.  Using (1.2), we wr i t e  

( ' )  ! (~, t) = I. ~- - S ~(~) et = c. (1.4) 
tt 

Expression (1.4) for the form of the liquid volume" at the moment of time t, written in general form, cannot be 
used for the solution of actual problems. This is connected with the fact that, with a given form of the function 
f0(z0), the function f(z, t) can  be  wr i t t en  out when the i n t eg ra l  equation (1.2) has been  solved.  The solution of 
(1.1) is not pos s ib l e  with any function ~ (z), and the function ~(z) i t se l f  can  be wr i t t en  in explici t  f o r m  only for  
the s imp le s t  c a se s  of s t e a d y - s t a t e  flow. 
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It is m o r e  convenient  to cons ide r  the mot ion of the liquid volume in the plane w. Since w(z) is an ana-  
lyt ical  function, occupied by the liquid volume,  the region of the phys ica l  plane co r r e sponds  to  some region * 
in the plane w, bounded by the c losed cu rve  f(z (w), t )= F(w, t ) = c ,  and mot ion in the phys ica l  plane is a c c o m -  
panied by mot ion  in the plane w. 

We r e p r e s e n t  the boundary F(w, t) =c as consis t ing of s eve ra l  s ing le -va lued  curves  ~i(r  For  solution 
of the p r o b l e m  of finding the f o r m  of the liquid volume it is obvious that  i t  is sufficient  to be able to de te rmine  
the f o r m  of an a r b i t r a r y  s ing le-va lued  liquid r at an  a r b i t r a r y  moment  of t ime  and to know the law of the 
t r a n s f o r m a t i o n  of z (w). In all  that  follows, up to the final resul t ,  we cons ider  the p r o b l e m  of the deformat ion  
of the liquid line, s ince the re  is no difficulty in const ruct ing a c losed volume f r o m  seve ra l  s ingle-valued l ines 

~i(r )- 

We de te rmine  the veloci ty  of a Lagrang ian  pa r t i c l e  in the plane w: 

~w d~ ; (% ~)i~ _ d~ (1.5) 
d"-t-= d--~ d'-~ = - - ' ~ '  

f r o m  which it follows that the mot ion in the plane w takes  p lace  along s t ra ight  horizontal  l ines and, at f i r s t ,  
with motion,  the s ing le-va lued  function ~(r r e m a i n s  s ingle-va lued .  

We introduce the function } = w - i 0 ,  in accordance  with the condition } = ln  ~. Since w(} ) is an analyt ical  
functi on, 

a~ 0~p a~ a~ 
0---0 = ~ - '  a--g = - -  0--0-" (1.6) 

We de r ive  an equat ion descr ib ing  the change in the der iva t ive  dr162162 with motion.  Differentiat ing (1.5) 
with r e spec t  to r we can  obtain the equation 

e d e ( , ) . ~ _ 2 ( o ( o  d(:D , OeoX 2~ 

Changing the order of differentiation in the left-hand part of the equation, substituting e2Wd/dr in place 
of d/dr and denoting d~(@)/d~ by 6(~) ,'we arrive at the ordinary differential equation 

d~i (~) = 2 [ 0~ 8 aco) d~ k a~ (~) + ~- (1.7) 

Solution of (1.7) by the method of the va r ia t ion  of constants  gives  the expres s ion  
cp 

8(q~) - -  8 (%) = 2e 2~ .1 
Oto 

~ - -  e - ~  ~ a% (1.8) 
r  

In view of the fact that it is always possible to reconstitute the sought function from a known derivative, 
(1.8), in principle, gives an answer to the posed problem, finding the form of the liquid line during the process 
of the motion. The result (1.8) is applicable for any given plane potential flow of an ideal liquid, where the 
analytical function w(~) is givenby a mutually single-valued mapping of regions of the flow on the planes w and }. 

w In the case  of mot ion within infinite l imi t s  wi th the  co l l i s ionof j e t s ,  using(1.3) a n d ( 1 . 8 ) , w e c a n w r i t e  

% = - - c ~ ,  ~ = oo,  e~m(•  V ~. 

Then 

F r o m  (2,1) an  e x p r e s s i o n  is obtained for  the final f o r m  of the liquid line 

with the condition ~@0)_~o = 0 (r 0 is the value of the s t r e a m  function at the f r ee  boundary) .  

F o r  the p r a c t i c a l  u~e o f  (2.2), it is convenient  to go over  in (2.1) to in tegra t ion  in the plane (w, 0). Since 
the in tegra t ion  in (2.1) is c a r r i e d  out with r  const ,  

a-~ d(o 0r + - ~  dO = 0  

and 
d~o a~laO 
d"'g = -  ar (2.3) 
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We obtain an express ion  fo r  d~ in the fo rm 

d ~ = - ~ -  -~" a-Y~7~ + t  dO, 

and, taking account of (I.6), (2.3), we finally obtain 

Using the Jacobian of the t rans format ion ,  we find the value of (Ow/~}r162 

(2.4) 

a (o, r 0 (r 0) o (o, 0) a:(~, ~) 0 (r 0) t [ ar 
a (r ~) o (o, 0 ) =  o (r ~) o (~, 0) o (o, 0) = ~ ~ ]  ' 

(0. o) 

I ~  ~  I 
~ ('P' r  - I co co [ o,'-~ 1 

o~ 

whence 

0r ~p_ t 
- [ do "~2 �9 (2.5).  

Substituting (2.4) into (2.1), and taking (2.5) into considerat ion,  we obtain 

8.(00) = 8 (--  oo) + 2V ~ .I e--2od0, (2.6) 
e (r 

where  O@) is the t r a j e c t o r y  of a pa r t i c l e  in the plane (w, 0). The dependence ~(r will not appear  as 

(I) 0P)| = (D (*)-~o + 2V' ; ~ o--2"dOd*. (2.7) 
r e(,) 

Let us cons ide r  a conc re t e  example  where  t h e r e  is s t eady-s t a t e  sy m m et r i c a l  flow with a c r i t i ca l  point 
during the col l i s ion of two jets  of identical  th ickness ,  density,  and velocity (Fig. 1). F o r  s teady-s ta te  flow 
with a c r i t i ca l  point, the p rob lem of finding the field of the veloci t ies  in the region of the flow has been solved 
[5]. The solut ion is wr i t t en  in the fo rm 

W= V {hx In ( t - - ~ 1  ) + h, ln(i--~)--kxln(l--~t)--k~In(i--~), 
! 

(2.s) 

where h i, hl, al, and a 2 are the respeotivetbiolmesses of oncoming jets at infinity; k i, k 2, bl, and b 2 are the same 
for expanding jets. In the actual example under consideration, we must set 

hx = h,  al = Vei~, h2 = h ,  as = Ire -iv, (2.9) 
kx =h(1  + eo~ y), b l '=  V, ks = h ( t  - -cosy) ,  b: = VeiS, 

where  ~ is the half-angle of the collisiou; V is the modulus of the jet  velocity at infinity. 

In one of the jets ,  for  example,  the jet  C1, le t the  or ig inal ly  s t ra ight  liquid line a- -a  (see Fig. 1), pe rpen-  
d icu lar  to the f r ee  boundar ies ,  be singled out. This means  that,  in (2.7), the t e r m  ~(r 0. With motion, 
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the l ine a - a  wil l  be de fo rmed ;  p a r t  of it goes  o v e r  into the jet  C 3 and p a r t  into C 4. With r emora1  to  infinity,  
the  p a r t s  of the  l ine going o v e r  into expanding je ts  t ake  on a def ini te  f o r m .  Let  us m a k e  a ca lcu la t ion  of th~ 
final  f o r m  of the  l ine going ove r ,  f o r  example ,  into the jet  C 3. 

In the  p lane  of the  c o m p l e x  potent ia l ,  the liquid l ine will  m o v e  in the  band hV (1 - cos  -/)/2 -< r -~ hV(1 + 
cos  T)/2 with a b r a n c h  cut  along the pos i t i ve  s e m i a x i s  r = 0, a long the  l ines  r = c o n s t .  In a c c o r d a n c e  with (1.4), 
(1.5), the l ine a - a  with r = -~o is mapped  by the  ve r t i c a l  l ine ~ = c o n s t  and m o v e s  with the ve loc i ty  V 2 in a 

pos i t i ve  d i r ec t ion ,  while  its f o r m  in the p lane  w co inc ides  with the  f o r m  in the p lane  z, with an  a c c u r a c y  up 
to  a n o r m a l i z i n g  cons tan t .  If the ve loc i ty  ~ at any a r b i t r a r y  point  of the  flow r e g i o n  is t aken  equal to  Vve - i v ,  
t hen  the  r e l a t ive  ve loc i ty  ~ at any a r b i t r a r y p o i n t  (q, r  is d e t e r m i n e d  f r o m  the s y s t e m  of equat ions  

2~q~ = in (t _ 2vcos (~/_ 0) A_ v2) + in ( 1 2vcos (~, + O) ~ v~)_- hV 

--  (l + cos ~) In (t - -  2v cos 0 A- v ~) - -  (t - -  cos ~) in (t -t- 2~ cos 0A- v~), 
sin (? -- 0) (2.10) n* = arctg i v sin (~, -~ 0) 

h--P- -- ~ cos (~ -t- 0) - -  arctg t -- �9 cos (~ -- 0) 

- - ( l - i - c o s ~ ) a r c t g  vsin0 vsin0 
1 - -  ~ cos 0 + (t - -  cos ~) arctg 1 +  v cos 0' 

The  s y s t e m  (2.10) is obtained f r o m  the f i r s t  equat ion of  s y s t e m  (2.8) by s e p a r a t i o n  of the r e a l  and i m a g i n a r y  
p a r t s ,  us ing the  condi t ions  (2.9). In the  c o n c r e t e  c a s e  of a s y m m e t r i c a l  co l l i s ion ,  in (2.6) it is m o r e  convenient  
to go o v e r  to i n t eg ra t ion  in the  p lane  (v, 0). 

Since e2~ 2, e x p r e s s i o n  (2.6) a s s u m e s  the f o r m  

(oo) = 2 ~' d_O0. 
o(~r ~2 (2 .11 )  

The  t r a j e c t o r y  |162 c a n  be r e p r e s e n t e d  in the p lane  (v, 0). At the f r e e  boundary  v = l  and 0 -~0->- , / ;  
t h e r e f o r e ,  the  f r e e  boundary  is r e p r e s e n t e d  by the s egmen t  AB in Fig.  2. N e a r  the f r e e  s t r e a m l i n e ,  ~ < 1 
e v e r y w h e r e ,  with the  excep t ion  of the  points  r = : ~ ,  and 0 i n c r e a s e s  cont inuous ly  f r o m  - ~ / t o  0; t h e r e f o r e ,  
n e a r  the f r e e  bounda ry  the  s t r e a m l i n e  wil l  be r e p r e s e n t e d  by the  c u r v e  AEB.  At  the  z e r o  s t r e a m l i n e  in the  
in te rva l  -oo < ~p _< 0 t h e r e  is a d e c r e a s e  in the angle  0 f r o m  - , / t o  - ~ / 2 ,  with a s imu l t aneous  d e c r e a s e  in ~ f r o m  
1 to 0. This  p a r t  of the l ine r  is r e p r e s e n t e d  by the  c u r v e  AD in Fig.  2. F u r t h e r ,  a t t h e  point  0 i n t h e  p h y s i -  
ca l  p lane  t h e r e  is a ro t a t i on  of the  ve loc i ty  v e c t o r  by an  amount  ~/2  ( - r / 2  <- 0 -  < 0) with v = 0, then  a r i s e  in 
f r o m  0 to 1 with 0= 0. This  p a r t  of the z e r o  s t r e a m l i n e  is r e p r e s e n t e d  by the two s e g m e n t s  DC and CB in the 
p lane  (v, 0). The s t r e a m l i n e  n e a r  the l ine r = 0 is r e p r e s e n t e d  by the  c u r v e  A FB. Thus ,  any g iven  t r a j e c t o r y  
|162 in the p lane  (~, 0) is r e p r e s e n t e d  by a c u r v e  with ends at the points  A and B, lying in the  c u r v i l i n e a r  
t r apezo id  A BCD. 

F o r  the  f o r m  of the  liquid line, tak ing  accoun t  of (2.11) we obtain  
r 

: f" (' dO (2.12) 
r e(r 

F r o m  (2.11) it fo l lows that  the l iquid l ine is not  p e r p e n d i c u l a r  to the f r e e  boundary  at  infinity in the  jet  C3: 
0 

dr 
d ,  I ,=, ,  = 2  Y d 0 = 2 u  

- - ?  

o r  

~t = arctg 2~, (2.13) 

w h e r e  5 is the  angle  be tween  a p e r p e n d i c u l a r  to  the  f r e e  boundary  a ' .  

Speci f ica l ly ,  f o r  a co l l i s i on  angle  , / = f / 2  

i t =  a rc tga  ~ 7 2  ~ 

and,  f o r  the  b reak though  of je t s  of a g r a d i e n t l e s s  l iquid 

5 = arctg 2~ = 8t ~ 

To plot  the  f o r m  of the liquid l ine with 2 , /=40,  50, 60" a n u m e r i c a l  ca l cu la t ion  was  m a d e  of the in tegra l  in (2.12). 
The b lock  of va lues  of the  in teg ra l  of  (2.11) was  ca lcu la ted ,  and then  the dependence  (2.12) was  plot ted us ing  
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the fo rmula  of a t r apezo id .  Calcula t ion of the in tegra l  (2.11) s ta r ted  f r o m  the point v = 1, 0 = - %  From an 
ana lys i s  of the second equation of s y s t e m  (2.10) it follows that  dr/dO at the point A (see  Fig. 2 ) i s  de te rmined  as 

dr/dO = ctg aOp/hV -t-cos y/2). (2.14) 

Using (2.14), the values  of vl=v o +Av, 01= 00+A0 were  found, and the de r iva t ives  ar ar were  ca lcu-  
la ted in acco rdance  with the fo rm u l a s  

hV [ s in  (0 -i- Y) s in  (0 - -  y) 
= - ~ -  U - 2v c--~-~o T i )  + v ,  + t - 2~ cos (0 - v) + v* - 

- -  ( i  - } -COSy)  s inO " s in O ) 
t -  2v'-c~-O-t- v s + ( t  --COSy) "i -}- 2vcos O + v  I ' 

v -- cosO 
/W _ [ v--cos(0+' / )  v -- cos (0 -- ~) - - ( t  + c o s y )  t - -2vcos0+vs  ----.---~-Vtl--2vcos(O+v)+v~ + t -- 2v cos (0 -- V) § vl 

v-FcosO ) 
(1 - -  cos ?) i + ~.~'~--0-+ ~ ' 

and the  value of ~ using the second equat ion of s y s t e m  (2.10). If [ dr~dO[, defined as  

dv O91O0 
~ - -  = __ ~ / ~ ,  

was found to be g r e a t e r  than  1, then the ca lcula t ion  was made  using the fo rmula  

6 ( o o ) = 2  I ~ 
oi*) v=-~ 

with the constant  spacing Av =d, and the value 

A0 = Av/-~' .  

In the con t r a ry  case ,  the ca lcu la t ion  was made  using the fo rmula  (2.11) with the constant  spacing A 0 = d  with 
Av=AOdv/dO. The spacing d was var ied  f rom 0.01 to 0.005. If the deviat ion [@ - ~0[ (~0 is a g iven s t reaml ine)  
was found not to be smal l ,  then fo r  [ clP/d01 > 1 a root  was  found for  the equation [~ (v,  0 )1 =~0 by the New- 
tonian method with v =const ,  while fo r  I cl~/d0 ]< 1 the  root  was  found with 0 =const .  The block of va lues  of 
the in tegra l  (2.11) va r i ed  f r o m  9 to 19. 

T r a j e c t o r i e s  O (~) for  2"?---50 ~ calcula ted  using the above -desc r i bed  method,  a r e  given in Fig. 3, which 
gives five cu rves  of O@) with values  f r o m  0.9~ 0 to 0.1~ 0, with the spacing 0.2~ 0. F igure  4 shows the fo rm 
of the liquid line, ca lcula ted  using (2 .12)for  the angles  23/=40, 50, 60 ~ (curves 1-3, r espec t ive ly ) .  

As can be s een  f r o m  the r e su l t s  of the calcula t ions ,  a f t e r  pass ing  through the region of the coll ision,  
the liquid line is not found to be pe rpend icu la r  to the  f r ee  su r face ,  which is in a g r e e m e n t  with (2.13). Close  
to the in ter face ,  the line @(@) [or,  what is the s a m e  thing, x(y)] asympto t ica l ly  approaches  the axis  ~ = 0 (y = 0). 
F rom a c o m p a r i s o n  of the r e su l t s  obtained with exper iment ,  it is p robably  poss ib le  to judge approx imate ly  in 
what region of the r ea l  flow the s t a te  of the m a t e r i a l  is c lose  to the s ta te  of a nonviscous incompress ib le l iqu id .  

The author  wishes  to exp res s  his thanks to N. S. Kozin and V. V. Ef remov for  a number  of va luable  ob- 
se rva t ions  with an evaluat ion of the work,  and N. M. Maks lmova  for  he r  aid in making the numer ica l  calculat ion.  
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w In an i ncompres s ib l e  liquid, filling the whole space  outside of the finite region K (with a sufficiently 
smooth  c losed su r face  0K), let the re  be given a f ield of the ve loc i t ies  v( r ,  t), sa t i s fy ing the following conditions: a) 
suff icient  smoothness ;  b) div v = 0 ;  c) Iv(r)[ ~ c o n s t / r  l+e, [rot v[ ~ c o n s t / r  4+e with r = Ir[ ~ o  with smal l  ~ > 0. 

We denote by n the externa l  normal  to 0K, and by G the reg ion  filled with the l iqu id .  Let  the liquid den- 
s i ty  p = 1. It is convenient  to use  the following r ep re sen t a t i on  for  v(r ,  t); 

v(r) = grad cp + rot A; (1.1) 

i + (r) = -  d S ,  

(1.2) 
= i ^ + ~ •  dS], 

where  s = [r - ~ !; the symbo l  n ^ ,  denotes  v a r i a b l e s  with r e s p e c t  towhich  in tegra t ion  is c a r r i e d  out; w - rot  v. 

This  r e p r e s e n t a t i o n  for  the ease  of a finite G is given in [1]; for  an  infinite region G it is p roved  by a 
d i rec t  ca lcu la t ion  [subst i tut ion of (1.2) into (1.1)], taking account  of l imi ta t ions  on the asympto t ic  of the field 
of the veloci ty .  Here  a f o rm a l  ca lcula t ion gives v(r) -= 0 in the region K outside the liquid. 

The l a t t e r  shows that  the flow in G can  be in tegra ted  as the flow in the whole space ,  obtained by "fil l ing" 
of the region K with a liquid at res t .  Under  these  c i r c u m s t a n c e s ,  at OK the re  is a discontinuity of both the 
tangent ia l  and no rma l  components  of the velocity,  cor responding  to the d is t r ibut ion (1.2) of the vor t i ces  of 
the densi ty  n x  v and s ou rce s  of the densi ty  n .v  at OK. 

Natural ly ,  the region K can  be filled in any o ther  a r b i t r a r y  way (not n e c e s s a r i l y  by a liquid at  res t ) ;  
under  these  c i r c u m s t a n c e s ,  the re  is a change in the dis t r ibut ion of the vor t i ces  and sources  in (1.2). 

However ,  the r e p r e s e n t a t i o n  (1 .2)has  the advantage that  the "fi l l ing" of K with a liquid at r e s t  does not 
change the to ta l  m o m e n t u m  of the flow, which will be impor tant  in what follows with a genera l i za t ion  of the 
concept  of m o m e n t u m .  

w Momentum of Flows of an Incompres s ib l e  Liquid. The usual definit ion of the momen tum of a flow, 
which we shall  ca l l  the  " t rue"  m o m e n t u m  I, has the fo rm 

I =  t 'vdV, ,y. (2.1) 

where  V 0 is the volume occupied by the liquid; v =v(r ,  t) is the field of the veloci ty.  

This  definit ion is appl icable  for  both finite and infinite V0, with the condition of the absolute  convergence  
of the in tegra l  (2.1). 

However ,  in the case  of a liquid filling the whole space  outside some  l imi ted  s y s t e m  of bodies,  the inte-  
g ra l  (2.1), fo r  flows having a d ipolar  a sympto t i c ,  does not converge  absolute ly .  Its value is found to depend 
on the m a n n e r  in which the volume of the in tegra t ion  approaches  infinity. In the ca se  of absolute  convergence  
of (2.1) fo r  a liquid filling the whole space,  I = 0 ;  i .e. ,  for  all  such flows with a ze ro  momen tum,  the definition 
(2.1) has no meaning.  
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